
v4.29.0

This version enhances support for Multi-Conversations and enables Multi-Party

Conversations. Users of the Web SDK can now be joined into multiple conversations

and allows multiple users to message each other. Read about Multi-Party Conversation

on our guide.

What̓ s New

Initializing the SDK

The new version of the SDK should now be initialized with an integrationId rather

than an appId . You can find your integrationId through the Sunshine

Conversations dashboard when connecting a Web SDK integration or through the API.

Smooch.init({integrationId: '<integration-id>'}).then(function() {
 // Your code after init is complete
});

Note that to support backwards compatibility an appId can still be used to initialize

the Web SDK, but the SDK will be initialized with the web SDK integration with the

oldest creation date.

New APIs

The new version of the SDK brings some new APIs to help manage conversations.

getConversationById(conversationId)

An asynchronous method to fetch a specific conversation.

getConversations(offset)

Smooch.getConversationById('<conversation-id>').then(function(conversat
 // Your code after conversation is returned
});

https://docs.smooch.io/rest/#list-integrations
https://docs.smooch.io/rest/#list-integrations

An asynchronous method that returns a list of conversations sorted by the

lastUpdatedAt property. An optional offset argument can be specified for paging

purposes.

Smooch.getConversations().then(function(conversations) {
 // Your code after conversation list is returned
});

New Events

The new version of the SDK brings new conversation events.

participant:added , participant:removed

These events are triggered when a participant is added or removed from a

conversation.

conversation:added , conversation:removed

These events are triggered when the user is added or removed from a conversation.

What̓ s Changed

APIs

Many SDK APIs have been updated to allow for an optional conversationId
argument. This includes sendMessage(message, conversationId) ,
startTyping(conversationId) , stopTyping(conversationId) , and
markAllAsRead(conversationId) .

For all of these APIs if the conversationId argument is not provided, the user s̓

active conversation will be used.

Events

A data object is now being exposed with the message , message:received ,
message:sent , participant:added , participant:removed ,
conversation:added , conversation:removed , unreadCount , connected ,
disconnected , typing:start , and typing:stop events. This object contains a

truncated version of the conversation associated with the event.

Delegates

A data object is now being exposed by the beforeSend , beforeDisplay , and
beforePostbackSend delegates. This object contains a truncated version of the

conversation the delegate is impacting.

Smooch.init({
 integrationId: '<integration-id>',
 delegate: {
 beforeSend(message, data) {

Smooch.on('connected', function(data) {
 console.log('Connected with conversation ', data.conversation._id);
 console.log(data);
});

// data object
data = {
 conversation: {
 _id: '<conversation-id>',
 unreadCount: 0,
 lastUpdatedAt: 1581010017.596,
 type: "multiUser",
 participants: [
 {
 _id: '<participant-id>',
 appUserId: '<appUser-id>',
 unreadCount: 0,
 lastRead: 1581010017.596
 }
],
 metadata: {}
 }
}

Smooch.on('unreadCount', function(unreadCount, data) {
 console.log(`The number of unread messages was updated for conversa
});

 if (data.conversation._id === '<conversation-id>') {
 message.metaga = {
 any: 'info'
 };
 }

 return message;
 }
 }
});

